
1 What Is Game Theory Trying to Accomplish?

1 Introduction

The language of game theory—coalitions, payo¤s, markets, votes—

suggests that it is not a branch of abstract mathematics; that it is moti-

vated by and related to the world around us; and that it should be able to

tell us something about that world. Most of us have long realized that

game theory and the ‘‘real world’’ (it might better be called the complex

world) have a relationship that is not entirely comfortable; that it is

not clear just what it is that we are trying to do when we build a game-

theoretic model and then apply solution concepts to it. This is the subject

I would like to explore in this paper. I might add that much the same

questions apply to economic theory, at least the kind that those of us

working in mathematical economics see most often; and that much of my

paper will apply, mutatis mutandis, to economic theory as well. There is a

branch of philosophy that deals with theory in the social sciences, so

some of the things I have to say are unquestionably old hat. But I am not

trying to be particularly original: I am only trying to open this topic,

which I think concerns all of us, for discussion, and to suggest a particu-

lar point of view. No doubt others have thought about these questions

more thoroughly and deeply than I have, and are better versed in the

history and philosophy of science in general. I will be grateful to anybody

who sets me straight when I err, and who gives me references for the

things I get right.

My main thesis is that a solution concept should be judged more by

what it does than by what it is; more by its success in establishing rela-

tionships and providing insights into the workings of the social processes

to which it is applied than by considerations of a priori plausibility based

on its definition alone.

The first eight sections of the paper are concerned with generalities;

sections 9–17 illustrate my point of view; and the last section summarizes

and concludes.
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2 Comprehension

To come to grips with the question of what we are trying to do in game

theory, we must first back o¤ a little and ask ourselves what science in

general is trying to do. The ‘‘man in the street’’ may answer this question

in terms of practical applications: light bulbs, plastic, computers, atom

bombs, preventing depression, and so on. He concedes that, in the long

run, applications and inventions require a broad infrastructure of ‘‘basic’’

science; but (according to this view) the purpose of science is the develop-

ment of the practical application.

More sophisticated observers, including many scientists themselves,

answer the question in terms of predictive power. The theory of relativity

was a success, they believe, because it predicted the precession of the

perihelion of Mercury and the displacement of the images of the stars

in a solar eclipse. If a theory has no predictive power—if it is not

‘‘falsifiable’’—then it is not science.

Both these views miss the main point, I think. On the most basic level,

what we are trying to do in science is to understand our world. Pre-

dictions are an excellent means of testing our comprehension, and once

we have the comprehension, applications are inevitable; but the basic aim

of scientific activity remains the comprehension itself.

3 Three Components of Comprehension: Relationships, Unification, Simplicity

Comprehension is a complex concept, with several components. Perhaps

the most important component has to do with fitting things together,

relating them to each other. To ‘‘understand’’ an idea or a phenom-

enon—or even something like a piece of music—is to relate it to familiar

ideas or experiences, to fit it into a framework in which one feels ‘‘at

home.’’ When one first listens to Bach, one feels attacked by a discordant

jumble of meaningless, disconnected sounds. But eventually one begins to

hear patterns; the horn takes up what the violin said, groups of sound

recur in minor and major keys, passages are repeated. Things jell, and

one begins to feel ‘‘at home.’’ After a while one recognizes the style, and

even if one is listening to an unfamiliar piece one can relate it to other

pieces by the same composer or of the same period. One understands the

music.

I would like to emphasize that I am not talking merely about familiar-

ity; while it is important, it is not the main point. I am talking about

relating, associating, recognizing patterns. Snowflakes are hexagonal; the

shells of certain snails are logarithmic spirals; buses on busy routes arrive
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in bunches; in their orbits around the sun, the planets sweep out equal

areas in equal times; waves and ripples occur in the ocean as well as on

sand dunes; fever is associated with infections; E predominates as the

Deity’s name in some parts of the bible, J in others; even total random-

ness has its patterns (normal and Poisson distributions, etc.). After a

while, a pattern becomes so familiar that it itself is viewed as an observa-

tion, and then we begin seeking—and finding—patterns in the patterns.

The law of gravitation is a pattern that one can discern both in the

motion of the planets and in the form of a water wave or a sand wave.

And there are also di¤erent kinds of waves—electromagnetic or sound

waves, which seem to have nothing to do with gravity. Crystalline form is

observed not only in snow, but in many other materials. And so on.

This brings us to the second component of comprehension, which is

really part of the first: unification. The broader the area that is covered

by a theory, the greater is its ‘‘validity.’’ I am not thinking of ‘‘validity’’

in the usual sense of truth, but rather in the sense of applicability or use-

fulness; I am measuring the validity of an idea by the amount that people

(directly or indirectly) use it. Part of the greatness of theories like grav-

itation or evolution, or the atomic theory of matter, is that they cover so

much ground, that they ‘‘explain’’ so many di¤erent things.

Of course, a unificatory theory is really a special case of a relationship;

many di¤erent phenomena are pulled together—related to each other—

by means of it. The idea of gravitation in itself, in the abstract, is rather

mysterious; it is important because it enables us to relate the tides to the

motion of the planets and to the trajectories of shells and missiles.

The third component of comprehension that I would like to discuss is

simplicity. What I mean is mostly the opposite of complexity, though the

other meaning of ‘‘simple’’—the opposite of ‘‘di‰cult’’—also plays a

role. Here there are several sub-components. One is spareness; as few as

possible exogenous parameters should be used to account for any partic-

ular phenomenon. Ptolemy’s theory of epicycles is in a certain sense cor-

rect; it cannot be rejected on the basis of the evidence. But to describe the

motion of a heavenly body one needs many exogenous parameters,

whereas in Newton’s theory one needs just two (mass and velocity).

In addition to spareness in exogenous parameters, one would like

spareness in the basic structure of the theory. Here again Newton’s

theory is an apt example, because it can be derived from his three basic

laws of motion plus the inverse square law of gravitation, all of which are

very simple. The theory of evolution or the atomic theory of matter are

other apt examples of spareness, or relative spareness, in basic structure.

An example of complexity—the opposite of what we want—is modern

elementary particle theory. It is clear that nobody is particularly happy
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with this, and that it is considered an intermediate stage on the way to a

more satisfactory theory.

We come finally to the matter of simplicity in the sense that is opposite

to di‰culty. For a theory to be useful, working with it must be practical.

If you cannot figure out what it implies, it won’t unify anything, it won’t

establish relationships. If the chief problems of celestial mechanics had

been 3-body (or n-body) problems, then the theory of gravitation would

not have been very important, because we could not have used it to cal-

culate any results. All other things being equal, the simpler a theory is,

the more useful it is—and hence the more valid.

4 Science and Truth

Most readers will by now have understood that, in my view, scientific

theories are not to be considered ‘‘true’’ or ‘‘false.’’ In constructing such a

theory, we are not trying to get at the truth, or even to approximate to

it: rather, we are trying to organize our thoughts and observations in a

useful manner.

One rough analogy is to a filing system in an o‰ce operation, or to

some kind of complex computer program. We do not refer to such a

system as being ‘‘true’’ or ‘‘untrue’’; rather, we talk about whether it

‘‘works’’ or not, or, better yet, how well it works. As an o‰ce operation

grows, filing systems change and evolve; at some points, completely new

and di¤erent systems may be introduced, to accommodate to the evolu-

tion of the kind and amount of material to be filed.

Similarly, scientific theories must be judged by how well they enable us

to organize and understand our observations; by how well they ‘‘work.’’

As our observations increase in volume and change in character, old sci-

entific theories are no longer as appropriate as before; they either evolve

and change, or are replaced by entirely new and di¤erent theories. Truth,

however, is not the issue. We discard a theory not because it has been

‘‘disproved,’’ but because it no longer works, is no longer appropriate.

It is even possible for two competing theories to exist happily side by

side and be used simultaneously, in much the same way that many of us

file letters both chronologically and by the name of the correspondent.

Two famous examples are relativistic vs Newtonian mechanics, and wave

vs particle theories of light. In each case each of the theories has its

areas of usefulness. I remember reading in my teens that one famous

scientist considered the wave theory ‘‘true’’ on Mondays, Wednesdays

and Fridays, whereas he preferred the particle theory on Tuesdays,

Thursdays and Saturdays (apparently he didn’t work on Sundays). He
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used either, at convenience, on any day of the week; but the problem of

which one was ‘‘true’’ seems to have bothered him. Apparently he didn’t

subscribe to my view of science; or maybe his flippant remark was meant

to indicate that he did, that the matter of ‘‘truth’’ was secondary to him,

and that the most important thing was to get on with his work.

The example of relativistic vs Newtonian mechanics is particularly

instructive. It is probably fair to say that most of those scientists who

seek the ‘‘truth’’ consider relativistic mechanics a better approximation to

the truth than Newtonian mechanics. Nevertheless, they continue to use

Newtonian mechanics for most ‘‘everyday’’ purposes. Why? Well, they

say, the Newtonian theory is usually a good enough approximation to

relativity. Why settle for an approximation when you can get it exactly

right? Well, they might say, in many cases the relativistic theory is too

cumbersome to work with; the Newtonian theory is more workable. But

then, it appears, ‘‘truth’’ is after all not the only criterion; Newtonian

mechanics continues to be used as a model—on a much larger scale than

relativity—even after it has been discredited from the point of view of

‘‘truth.’’

I vividly remember an afternoon ten or fifteen years ago when Paul

Erdos, on one of his many visits to Jerusalem, was delivering a lecture at

the mathematics colloquium. Though his mathematical powers were (and

are) still extraordinary, he started by saying that he was now old and

exhausted (‘‘Zaken Vetashush’’), and that little could be expected of him.

Of course we all protested. But Erdos insisted, and finally stated flatly

that he could prove that he was no less than 2 billion years old. In his

childhood the earth had been 2 billion years old; now it was 4 billion

years old; the conclusion about his age was inescapable.

Like many good jokes, Erdos’s has a serious kernel. In the 1920s, the

model that best fitted the known observations and existing theory was

a 2-billion-year-old earth. By the 1970s, radioactive dating had been

discovered, our ways of thought had changed in many ways, and the

4-billion-year model fitted much better. Evidence that had seemed strong

and convincing 50 years ago gave way to stronger and more convincing

evidence in a di¤erent direction; the older evidence had to be, and was,

explained away. It would be foolhardy to think that the process has

ended here, that no new evidence will be discovered, that the earth is

truly 4 billion years old. It seems much more likely that in the course of

time we will change our minds—or rather our model—again and again;

indeed, the end of the process is not in sight. Why say that we were

‘‘wrong’’ then, that we have discovered the errors of our ways and are

‘‘right’’ now? It seems much more apt to say that when Erdos was a

child, 2 billion years was right, and now 4 billion years is right. Each of
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these two models is the one that best fits, or organizes, or ties together,

the observations available at its time, and the theories current at its time.

Here is another example. When the red shift in light from distant gal-

axies was first observed, two theories presented themselves. The one was

that, in travelling such long distances, the light somehow gets ‘‘tired,’’ the

frequency of vibration decreases, and a shift to the red results; the other

theory was that the galaxies are receding—the universe is expanding—

and the red shift is associated with the Doppler e¤ect. At present, the

expanding universe theory appears to have won out. Most reasonable

scientists will agree, however, that this area is very much in flux, and that

our thinking on these matters is liable to change. Some will express this

by saying that, though we now think that the universe really is expand-

ing, new evidence—or new theories—may change our minds. But I prefer

to say that the best model or system we can find for organizing our cur-

rent observations and current theories involves an expanding universe;

and that in the future we may, for one reason or another, find that other

systems work better.

Some philosophies deny altogether the existence of objective truth, but

for my purposes this is not necessary, and I do not wish to insist on it.

The concept of truth applies to observations; one can say that such and

such were truly the observations. It also applies to all kinds of everyday

events, like whether or not one had hamburger for dinner yesterday. It

does not, however, apply to theories.

I’d like to stress that I am not being dogmatic. What I would like to

sell is a point of view, not a hard and fast position. The boundary lines

are without doubt fuzzy. A conjecture about what happened next door

yesterday may well be considered true or false, whereas a theory about

what happened a billion years ago or a billion light-years away will not

be. It can even happen that a theory graduates into a truth; whereas the

roundness of the earth was a theory for the ancients, it can, I think, be

considered a truth for us.

Readers may ask, why am I so insistent on making this point? What

di¤erence does it make whether we are looking for the truth or for a

workable model, as long as we are not dogmatic and are willing to con-

sider new evidence or new ways of thinking?

I think that the distinction is crucial for social science in general, and

for game theory and economics in particular. For one thing, we have the

matter of pluralism—the existence of parallel scientific theories side by

side. We have seen that this occurs even in the natural sciences; but in our

disciplines it is ubiquitous, it is very much the name of the game. People

ask, since game theory o¤ers a multiplicity of solution notions, what

good can it be? Which solution notion is the right one? How do people
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‘‘truly’’ behave? If one takes the point of view suggested above, this

question loses much of its sharpness. None of the solution notions tells us

how people truly behave. They do not go about organizing blocking

coalitions, as the core might suggest; they do not object and counter-

object as in the bargaining set; they do not declare dividends as in Har-

sanyi’s value; and so on. Rather, a solution notion is the scientists’ way of

organizing in a single framework many disparate phenomena and many

disparate ideas. And it is simply that the kind of social phenomenon that

our disciplines cover has not yet proved amenable to a single overriding

system of thought, and perhaps never will.

Another reason for stressing this point—that a theory should not be

thought of as true or false—is to avoid the pitfalls of taking it too liter-

ally. For example, an objection that has been raised to the fundamental

notion of utility maximization is that, for one reason or another, individ-

uals do not really maximize utility. Alternatives such as satisficing have

been proposed, which sometimes seem more appropriate as descriptions

of true individual behavior. But the validity of utility maximization does

not depend on its being an accurate description of the behavior of indi-

viduals. Rather, it derives from its being the underlying postulate that

pulls together most of economic theory; it is the major component of

a certain way of thinking, with many important and familiar implica-

tions, which have been part of economics for decades and even centuries.

Alternatives such as satisficing have proved next to useless in this respect.

While attractive as hypotheses, there is little theory built on them; they

pull together almost nothing; they have few interesting consequences. In

judging utility maximization, we must ask not ‘‘Is it plausible?’’ but

‘‘What does it tie together, where does it lead?’’

5 Game Theory as Descriptive Science

Briefly put, game and economic theory are concerned with the interactive

behavior of Homo rationalis—rational man. Homo rationalis is the spe-

cies that always acts both purposefully and logically, has well-defined

goals, is motivated solely by the desire to approach these goals as closely

as possible, and has the calculating ability required to do so.

The di‰culty with this definition is apparent as soon as one writes it

down. Homo rationalis is a mythical species, like the unicorn and the

mermaid. His real-life cousin, Homo sapiens, is often guided by subcon-

scious psychological drives, or even by conscious ones, that are totally

irrational; herd instincts play a large role in his behavior; even when his

goals are well-defined, which isn’t often, his motivation to achieve them

may be less than complete; far from possessing infinite calculating ability,
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he is often downright stupid; and even when intelligent, he may be tired

or hungry or distracted or cross or drunk or stoned, unable to think

under pressure, able to think only under pressure, or guided more by his

emotions than his brains. And this is only a very partial list of departures

from the rational paradigm.

Thus we cannot expect game and economic theory to be descriptive in

the same sense that physics or astronomy are. Rationality is only one of

several factors a¤ecting human behavior; no theory based on this one

factor alone can be expected to yield reliable predictions.

In fact, I find it somewhat surprising that our disciplines have any

relation at all to real behavior. (I hope that most readers will agree that

there is indeed such a relation, that we do gain some insight into the be-

havior of Homo sapiens by studying Homo rationalis.) There is appar-

ently some kind of generalized invisible hand at work. While in any given

situation an individual may well act irrationally, there seems to be a

cumulative e¤ect of numbers and time and learning that pushes people

‘‘in general’’ in the direction of rational decision-making. It doesn’t make

people more and more rational, but as a given setting gets more and

more common and familiar, it makes them act more and more rationally

in that setting. The descriptive power of the rationality hypothesis is

nicely summed up in Abraham Lincoln’s remark, ‘‘You can fool all of

the people some of the time, and some of the people all of the time, but

you can’t fool all of the people all of the time.’’ If one is careful not to

expect too much, then Homo rationalis can serve as a model for certain

aspects of the behavior of Homo sapiens. This is related to ideas in biol-

ogy and evolution, in which the doctrine of survival of the fittest trans-

lates into maximizing behavior on the part of individual genes. We know

that genes don’t ‘‘really’’ maximize anything; but the phenomena we

observe, or some of them, are nicely tied together by the hypothesis that

they act as if they were maximizing. Things are more complicated in the

social sciences, first because the decisions themselves are very complex,

and second because non-maximizing conduct is not as ruthlessly punished

as in the jungle; but perhaps there is a similar trend.

Descriptively speaking, then, we can expect our disciplines only some-

times to explain or provide insights into ‘‘real’’ phenomena. We cannot

expect them always to do so, because they are admittedly incomplete. We

cannot even say beforehand when we expect them to do so, because we

do not yet know how to integrate rational sciences like game theory and

economics with non-rational sciences like psychology and sociology to

yield accurate predictions. The criterion for judging our theories cannot

be rigid; we cannot ask, is it right or is it wrong? Rather, we must ask,

how often has it been useful? How useful has it been?
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All this may sound very slippery and unsatisfactory. There are no firm

predictions, no falsifiability. If our theory appears not to work, we don’t

lose any sleep. ‘‘Rationality is just one of the relevant factors,’’ we say

blandly; ‘‘here something else was at work.’’

But for better or for worse, that is how things stand. We must get used

to the fact that economics is not astronomy, and game theory is not

physics. We know that, in bringing up our children, we must accept each

one for what he is, for the good that is in him, and must not force him

into somebody else’s mold. The sciences are the children of our minds; we

must allow each one of them to develop naturally, and not force them

into molds that are not appropriate for them.

It should be pointed out that our fields are by no means the only ones

in science that are not strong on predictions and falsifiability; in which

the measure of success is ‘‘does it enable me to gain insight?’’ rather than

‘‘what will be my observations?’’ Similar in this respect are disciplines like

psychoanalysis, archeology, evolution, meteorology and to some extent

even aerodynamics. Airplanes are not designed by solving the equations

of aerodynamics: they are designed by intuition and experience, and

tested in wind tunnels and in test flights. The intuition that goes into the

design is based partly on theory; theory provides important general prin-

ciples. But it does not do anything like predicting airworthiness of a par-

ticular design.

In the end, I think that the ordinary laws of economic activity apply to

our fields as well. The world will not long support us on our say-so alone.

We must be doing something right, otherwise we wouldn’t find ourselves

in this beautiful place today.

6 Normative Aspects of Game Theory

In the previous section we indicated in what sense game and economic

theory could be considered descriptive. In this section we consider its

normative aspects—game theory as engineering rather than as science.

A word of caution before starting out. The distinction between the

descriptive and the normative modes is not as sharp as might appear, and

often it is di‰cult to decide which of these two we are talking about. For

example, when we use game or economic theory to analyze existing

norms (e.g., law), is that descriptive or is it normative? We must also be

aware that a given solution concept will often have both descriptive and

normative interpretations, so that one will be talking about both aspects

at the same time. Indeed, there is a sense in which the two aspects are

almost tautologically the same. In the previous section we pointed out
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that game theory purports to describe not Homo sapiens, but Homo

rationalis; and that it actually is descriptive of Homo sapiens only to the

extent that he can be modelled by Homo rationalis. On the other hand,

when we come to advise people, it is clear that we should give them

rational, utility-maximizing advice, i.e., precisely what Homo rationalis

would do; so that the two aspects are in this sense quite close.

Nevertheless, if not taken too rigidly the distinction is sometimes quite

useful, and we shall avail ourselves of it here.

Normative aspects of game theory may be subclassified using various

dimensions. One is whether we are advising a single player (or group of

players) on how to act best in order to maximize payo¤ to himself, if

necessary at the expense of the other players; and the other is advising

society as a whole (or a group of players) of reasonable ways of dividing

payo¤ among themselves. The axis I’m talking about has the strategist

(or the lawyer) at one extreme, the arbitrator (or judge) at the other.

Again, the distinction is often spurious; when advising what to do, you

must take into account what the other players can do, and the outcome

may well be a reasonable compromise. In real life, an important

function of lawyers is to restrain their clients, and to press for reasonable

compromises. Conversely, reasonable compromises are based, almost by

definition, on the capabilities of the players. So this distinction, too, is a

blurry one; but it is useful to keep in mind.

Another distinction is between advice that is precise and/or numerical,

and normative insights of a general nature. An example of the former

would be a specific minimax strategy in a well defined tactical situation

(e.g. a destroyer-submarine hide-and-seek situation). An example of the

latter would be the insight that, in negotiating an international treaty,

each side should make sure that the proposed treaty represents an equi-

librium point, i.e. that it is written in such a way that it is a priori com-

mon knowledge that it is not worthwhile for either side to violate it.

7 The Classifying Function of Game Theory

Another important function of game theory is the classification of inter-

active decision situations. Perhaps this could be considered part of the

descriptive theory; but it really is something di¤erent, because it describes

the situations themselves rather than the behavior of the participants in

them. A classification of game situations is in fact as important for the

normative as for the descriptive theory.

Much of science starts out with classifications; the ‘‘right’’ classification

is often the key to a successful theory. Modern biology was made possible

by Linnaeus’s classification of all living things into species, genera, etc.;
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geology starts with the classification of rocks; and so on. Often classi-

fications are to some extent spurious; we know now that the notion of

species is not as central as had been thought, and that life might be more

accurately considered a continuum of di¤erent individuals representing

di¤erent combinations of genetic characteristics. But the classification is

nevertheless indispensable to enable us to organize our thoughts.

Just making the classifications is already a form of science; it enables

us to relate interactive situations to each other, to identify common

features, often to draw operative conclusions. We classify games into

cooperative or non-cooperative according as to whether or not there is

available a mechanism that can enforce agreements. The man in the

street is, I think, not aware of this distinction; certainly he is not aware of

its crucial importance; therefore he may think of an international treaty

as if it were much like a contract between businessmen. Having classified

games by their coalitional form, we become aware that the weighted

majority game [5; 2, 3, 4] is in a sense ‘‘the same’’ as [2; 1, 1, 1]; this is far

from obvious to the man in the street.

It may seem that these applications are comparatively trivial, and that

one shouldn’t require the whole gigantic theoretical structure of game

theory to reach this kind of elementary conclusion. Nothing could be

further from the truth. It is not enough formally to define concepts like

cooperative or non-cooperative in order to make them conceptually

meaningful. A formal definition is given meaning and content only by

experience and use. Without the theoretical work that has been done over

the last decades on both cooperative and non-cooperative games, the

concepts themselves would be sterile, and the fundamental distinctions

they embody would be overlooked.

An interesting example of this kind of process is the distinction

between games of complete and incomplete information. The early

development of game theory treated only complete information games,

i.e., those in which the structure of the game and the payo¤s are common

knowledge to the players. The restrictive nature of this assumption was

not overlooked; for example, Luce and Rai¤a (1957) are quite explicit on

this point. Nevertheless, this was the only available theory; the result was

that the existing applications all used the complete information model,

for better or for worse. No adequate tool for dealing with incomplete

information existed; nobody knew just how the theory would have to

be modified to deal with it. After muttering a few words of apology,

therefore, people simply used the complete information model as an

‘‘approximation’’ to the existing situation. That is, the e¤ects of incom-

plete information were ignored; for all practical purposes, incomplete

information games did not exist.
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Then came the landmark work of Harsanyi (1967). The most impor-

tant immediate e¤ect was the realization that incomplete information

games were indeed in principle no di¤erent from complete information

games, that the classical game-theoretic framework applied to them as

well. Without further work on the subject, it is possible that people would

have continued to think mainly in terms of complete information, simply

substituting a citation of Harsanyi for the muttered words of apology.

But Harsanyi’s work led to a stream of investigations of incomplete

information models of ever-increasing volume and depth; today, incom-

plete information is perhaps the ‘‘hottest’’ topic in economic theory. All

this work led to the realization that models with incomplete information

are quite di¤erent from those with complete information; that they have

their own problems and their own features. To cite just one example, it

became clear that disagreement was a perfectly rational outcome in

incomplete information cooperative bargaining. It is the sum total of

the work on incomplete information models—not the mere definition—

that makes the idea meaningful and gives it content. Of course, it is

Harsanyi’s definition that led to the development of the theory, that

made the theory possible; but it is the theory itself that is decisive, not the

definition.

A case in point is the ingenious experimental work of Roth and

Murnighan (1982) on bargaining under complete and incomplete infor-

mation, with and without assumptions of common knowledge.1 It is

interesting to compare these experiments with those of Fouraker and

Siegel (1960) carried out some 20 years earlier. Fouraker and Siegel also

ran bargaining experiments in both the complete and incomplete infor-

mation modes. But they did not have Harsanyi’s model, and so were

unable to specify the incomplete information case more than that each

side ‘‘is not informed’’ of the other side’s payo¤s. Roth and Murnighan,

on the other hand, specified the incomplete information in terms of types,

and made explicit use of the common knowledge variable (whether or not

the description of the game was common knowledge).

In fact, Roth and Murnighan use little or no theory. In principle, it

would have been possible to perform these experiments in 1960; in prac-

tice, this could not—and did not—happen before Harsanyi’s ‘‘type’’

model, and the related notion of common knowledge, were not only

defined, but also given a chance to mature, to become part of the atmo-

sphere, to be understood. And this can happen only as a result of the

development of the related theory.

1. See also Malouf and Roth (1981) and Roth, Malouf and Murnighan (1981).
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8 Game Theory and Mathematical Economics as Art Forms

An alternative way of viewing game theory and mathematical economics

is as art forms. The distinction between the common conceptions of

science and art is in any case not sharp; perhaps our disciplines are

somewhere in between. Much of art portrays the artist’s subjective view

of the world; art is successful when the view expressed by the artist finds

an echo in the minds of his audience, when the audience empathizes with

what the artist is expressing. For this to happen, the artist’s statement

must have some universality; it must express some insight of a general

nature, must be related to the audience’s experience—in brief, there must

be some objectivity in it.

The case for thinking of mathematics itself as an art form is clear.

Mathematics at its best possesses great beauty and harmony. The great

theorems of, for example, analytic number theory are reminiscent of

Baroque architecture or Baroque music, both in their intricacy and in

their underlying structure and drive. Other sides of mathematics are

reminiscent of modern art in their simplicity, spareness and elegance;

the most lasting and important mathematical ideas are often also the

simplest.

A characterization of art that I find very apt is ‘‘expression through a

di‰cult (or resistive) medium.’’ (I heard this from my friend M. Brach-

feld; he said he had read it somewhere, but could not remember where.)

The medium may be stone or rhyme or meter or a musical instrument or

canvas and paint, or the less well-defined but no less demanding medium

of the novel. The resistiveness of the medium imposes a kind of discipline

that enables—or perhaps forces—the artist to think carefully about what

he wants to express, and then to make a clear, forthright statement.

In game theory and mathematical economics, the resistive medium is

the mathematical model, with its definitions, axioms, theorems and

proofs. Because we must define our terms, state our axioms and prove

our theorems precisely, we are forced into a discipline of thought that is

absent from, say, verbal economics.

If one thinks of mathematics as art, then one can think of pure mathe-

matics as abstract art, like a Bach fugue or a Pollock canvas (though

often even these express an emotion of some kind); whereas game theory

and mathematical economics would be expressive art, like a cubist paint-

ing or Tolstoy’s War and Peace. We strive to make statements that, while

perhaps not falsifiable, do have some universality, do express some

insight of a general nature; we discipline our minds through the medium

of the mathematical model; and at their best, our disciplines do have

beauty, simplicity, force and relevance.
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9 Some Solution Concepts

The point of view I shall take in the next few sections was set forth at the

end of the introductory section: that a solution concept should be judged

by its performance in the applications, by the quantity and quality of the

relations that it engenders, not by ‘‘armchair’’ philosophizing about its

definition. From this point of view we will consider four of the most im-

portant solution concepts of game theory—the Nash equilibrium, the

core, the N–M stable set (or ‘‘solution’’) and the Shapley value. The idea

is not to give an exhaustive survey of game theory or even of these four

solution concepts, but to illustrate our ideas by some examples of some

solution concepts. In addition to mentioning applications of these con-

cepts, we will try to get some feel for what each of them expresses—not

from its definition, but from the applications themselves.

10 The Nash Equilibrium

This is certainly the game-theoretic solution concept that is most fre-

quently applied in economic theory. Born more than a century ago in

connection with Cournot’s (1838) study of duopoly, it is now extremely

common in many di¤erent applications. In perfectly competitive markets,

it is closely associated with the competitive equilibrium.2 Novshek, Son-

nenschein and others have used it to study entry and exit.3 It is com-

monly used for search,4 location5 and product quality6 problems. In

incomplete information set-ups it has been used to study auctions,7

insurance,8 principal-agent problems,9 again entry and exit,10 health,11

higher education,12 discrimination13 and a host of other particular

2. Arrow and Debreu (1954), Debreu (1952), Hurwicz (1979a, 1979b), Schmeidler (1969a,
1980), Shapley and Shubik (1967), von Neumann (1937).

3. Novshek (1980), Novshek and Sonnenschein (1978).

4. Butters (1977), Diamond (1971).

5. d’Aspremont, Gabszewicz and Thisse (1979), Hotelling (1929), Prescott and Visscher
(1977).

6. Akerlof (1970), Salop (1979).

7. Griesmer and Shubik (1963), Milgrom and Weber (1982), Myerson (1981), Vickrey
(1961, 1962), Wilson (1979).

8. Rothschild and Stiglitz (1976).

9. Radner (1981), Ross (1973), Shavell (1979).

10. Milgrom and Roberts (1982a, 1982b).

11. Pauly and Satterthwaite (1981).

12. Arrow (1973b), Spence (1974, 1976).

13. Arrow (1972a, 1972b, 1973a).
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models. In social choice theory it is ubiquitous. It is probably safe to say

that it impinges significantly on every area in which incentives are im-

portant—and this includes just about all of economic theory.

The Nash equilibrium is the embodiment of the idea that economic

agents are rational; that they simultaneously act to maximize their utility.

If there is any idea that can be considered the driving force of economic

theory, that is it. Thus in a sense, Nash equilibrium embodies the most

important and fundamental idea of economics, that people act in accor-

dance with their incentives.

There is a beautiful theorem of John Harsanyi (1973) relating to mixed

strategy equilibria that illuminates and underscores this idea. Mixed

strategy equilibria have always been intuitively problematic because they

are not ‘‘strict’’ (cf. the discussion of strictness below): a player will not

lose if he abandons the randomization and uses instead any arbitrary one

of the pure strategy components of the randomization. Harsanyi gets

around this by subjecting the payo¤ function of each player to a slight

random perturbation. Each player is privately informed of the true value

of his payo¤ function, but the other players know only the mean. The

result is that each player will be motivated to choose a particular one of

the pure strategy components of his equilibrium mixed strategy. An out-

side observer sees the game as one of complete information, with the

players playing mixed strategies. In fact, the game is of incomplete infor-

mation, and the players are playing pure strategies. The mixed strategy

models the ignorance of the outside observer and of the other players, not

a conscious randomization.

The beauty of this model is that it rings so true. No game can really be

of complete information; there are always nuances in tastes and whims of

the other players of which we cannot be aware.

Nash equilibrium has spawned a number of variants and related con-

cepts. In the applications the most significant of these to date have been

Selten’s ‘‘perfection’’ concepts: first the subgame variety (Selten, 1965),

later the more general ‘‘trembling hand’’ variety (Selten, 1975). Many of

the economic applications mentioned above in fact use perfect rather

than ordinary equilibrium points (EPs). Related to perfection are the

notions of subgame symmetry proposed by Kalai and Samet (1985),

Selten (1980) and others, the Kreps–Wilson (1982a) sequential equilib-

rium, Kalai and Samet’s (1984) persistency, Myerson’s (1978) properness,

and recent concepts developed by Kohlberg and Mertens (1986) which

are based on topological properties of the equilibrium correspondence.

The definitions of these concepts usually express a certain robustness or

continuity; if the game is changed a little, the equilibrium won’t change
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much. In practice, they express a more subtle idea, a sort of forward-

lookingness. Nash equilibrium may take threats into account; i.e., it

allows the players to knuckle under to threats even when it would hurt

the threatener to carry them out. The above concepts do not; in a sense,

they say ‘‘no matter what happens, do what is best for the future, and

assume that it is common knowledge that everybody will do so.’’ The

problem remains as to how to resolve uncertainties about the past that

a¤ect optimal behavior in the future; this is where the above concepts

di¤er, the ‘‘forward-lookingness’’ being a kind of common denominator.

Several other kinds of variants of the Nash concept appear in the liter-

ature. An equilibrium is strict if the inequalities appearing in its definition

are strict, i.e., if each player’s equilibrium strategy is the unique best reply

to the other players’ strategies. This implies stability of the equilibrium;

i.e., if some or all players use strategies slightly di¤erent from the equi-

librium strategies, all are motivated to return to the equilibrium. It thus

expresses robustness in a di¤erent sense than that expressed by perfection:

robustness as a function of the strategies rather than of the game. Harsa-

nyi (1974, 1975) and Selten have used this kind of stability, together with

Pareto domination and many other ideas, in constructing an elaborate

theory that chooses a unique equilibrium point for each game. This

theory has been applied to several specific game-theoretic models, most

of them bargaining models with either complete or incomplete informa-

tion (e.g., Selten and Güth, 1982).

An equilibrium is strong if no coalition of players can all gain by a

simultaneous deviation (while the players outside the coalition maintain

their strategies). Strong equilibria have significant applications in

repeated games, as we will see below; they are also important in social

choice theory, where they appear, e.g., in the context of manipulations of

elections.

Two other variants that have been proposed are the subjective and

the correlated equilibrium (Aumann, 1974). In subjective equilibria, the

players use uncertain events for which they have di¤ering subjective

probabilities to do their randomizing; in correlated equilibria, the ran-

domizations of the players need not be independent. Correlated equilibria

have been applied to various contexts, including repeated games (Forges,

1985, 1986). Subjective equilibria have to date found little direct appli-

cation to specific economic or other models, though various general the-

orems have been proved relating them to objective equilibria. But there

has been one very interesting spino¤: they led to the notion of common

knowledge, and to the subsequent development of the theory in this area.

This notion was originally defined by the philosopher Lewis (1969) and
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found its way into the decision sciences as a result of an investigation of

the properties of subjective equilibria (Aumann, 1976).

Let us now return to the applications. A surprising and beautiful

application of Nash equilibrium points is to evolutionary biology (cf. the

discussion in section 3 above). Maynard Smith’s (1982) Evolutionarily

Stable Strategy (ESS) represents a kind of Nash equilibrium point.

Recently Selten (1980) has combined Maynard Smith’s ESS with the per-

fection notion and developed a comprehensive game-theoretic approach

to animal conflicts and similar biological contexts. This has not remained

in the purely theoretical sphere; there are applications to empirical inves-

tigations of the behavior of specific animals (speckled wood butterflies,

etc.).

Another wide area of application that we have not yet mentioned is

that of cooperative games. It will be recalled that cooperative games dif-

fer from non-cooperative games only in that, in the former, agreements

can be enforced. In his 1951 Annals of Mathematics paper, Nash sug-

gested that EPs could be applied to cooperative games if the pre-play

bargaining procedure by which players form coalitions and agree on

payo¤s were formalized, and made a proper part of the game. Once this

is done it is no longer necessary to specify that the players may make

enforceable agreements, since these are possible within the framework of

the game. The game is therefore non-cooperative, and may be analyzed

by means of equilibrium points.

For a time this program had only limited success. In most bargaining

procedures, a very large number of equilibrium points is possible; there

may also be considerable dependence on the specific form of the bar-

gaining procedure. Nash himself (1950) proposed a way of getting

around some of these problems in the case of his two-person bargaining

problem, but it was fraught with di‰culties and he never managed to

carry it out explicitly.

As often happens, the first successes in this area were indirect. Rather

than using specific bargaining procedures, repeated games were used as a

paradigm for bargaining procedures. Underlying and justifying this

approach is the famous ‘‘Folk Theorem,’’ according to which any indi-

vidually rational feasible outcome of a game can be achieved as an equi-

librium outcome of an infinite repetition of that game; as shown by

Rubinstein (1995) and others, this holds also for perfect equilibria. As

early as 1959 it was shown that strong equilibria of the repeated games

are associated with the core of the one-shot game (Aumann, 1959).

Later attention shifted to incomplete information repeated games. In

such games, bargaining involves a subtle interplay of concealing and
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revealing information: concealing, to prevent the other players from

using the information to your disadvantage; revealing, to use the infor-

mation yourself, and to permit the other players to use it to your advan-

tage. In order to study these phenomena, attention was first concentrated

on two-person zero-sum repeated games. A large, subtle and deep liter-

ature on this subject was spawned, which spilled over into related fields

such as stochastic games. Two-person zero-sum games certainly cannot

give us any insight into bargaining, but here again we see the importance

of not taking too narrow an approach. In order to understand coopera-

tive games of incomplete information, we study non-zero-sum repeated

games of incomplete information; and for this purpose, it is necessary

first to understand zero-sum repeated games of incomplete information.

After zero-sum repeated games were studied intensively for about 15

years, a major breakthrough in the area of non-zero-sum repeated games

was recently achieved by Sergiu Hart (1985), who gave a complete char-

acterization of equilibrium outcomes in such games when there are just

two players and there is complete information on one side. The charac-

terization is not just technical; it gives important qualitative insights into

the nature of incomplete information bargaining.

Complete information repeated games have also been taken up again

in recent years. Important applications of equilibrium points in repeated

games have been made in economic contexts such as altruism, principal-

agent problems, insurance, oligopoly and the development of reputations

by several authors.14 The repeated prisoner’s dilemma has always been

an object of considerable theoretical as well as experimental interest; this

has led in recent years to the development of several additional variants

on the equilibrium concept. Worthy of special mention here is Axelrod’s

(1984) beautiful computer experiment.

Quite recently it has been shown that the more direct approach to the

Nash program for attacking cooperative games can prove fruitful after

all. Using a bargaining procedure in which time is costly, Rubinstein

(1982) showed that perfect equilibrium outcomes lead to equal division

in a two-person bargaining problem with a flat e‰cient frontier; later

Binmore (1987) extended Rubinstein’s result by showing that, in any two-

person bargaining problem, Nash equilibrium outcomes are associated

with Nash’s product maximization solution (which coincides with the

non-transferable utility value). The Rubinstein-Binmore results are par-

ticularly beautiful because they express an important practical insight:

14. Friedman (1977), Hammond (1975), Kreps, Milgrom, Roberts and Wilson (1982),
Kreps and Wilson (1982b), Kurz (1978), Milgrom and Roberts (1982b), Radner (1980,
1981), Rosenthal (1979), Rubinstein (1979) and others.
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impatience is an important component in reaching a compromise; the

players are more likely to reach a reasonable compromise if delay is

costly to them, if the value of the product that is being bargained for

deterioriates with time.

11 Nash Equilibrium: Summary and Conclusions

Nash equilibrium is without a doubt the most ‘‘successful’’—i.e., widely

used and applied—solution concept of game theory. It touches almost

every area of economic theory, as well as social choice, politics and many

other areas of application. Within game theory itself it engenders a host

of relationships. Basically a non-cooperative concept, it has nevertheless

been applied with considerable success to cooperative models.

Conceptually, the Nash equilibrium and most of its variants express

the idea that each player individually maximizes his utility; it is a simple

expression of the rationality of the individual player. Two of its var-

iants, though—the strong equilibrium and the Harsanyi–Selten unique

equilibrium—go beyond this to express some form of cooperation or

joint rationality.

The definition of the Nash equilibrium is in form extremely simple.

Moreover, the concept is mathematically very tractable and easy to work

with. But there are problems with its intuitive interpretation. In games of

perfect information, perfect equilibria can be arrived at by a sort of

dynamic-programming, backwards-induction procedure whose intuitive

content is very clear and compelling. In other games it is by no means

clear how the players would arrive at an equilibrium, why they should

play equilibrium strategies, and how a specific equilibrium would be

chosen from among the set of all equilibria. There are indeed games in

which the Nash equilibrium looks very strange and counterintuitive. For

a long time it was thought that a Nash equilibrium could be thought of

as a self-enforcing agreement, but recently it has been shown that this,

too, is incorrect: there are games with multiple Nash equilibria, in which

an agreement to play a certain one of them does not increase the chance

of its actually being played (Aumann, 1990).

Nash equilibrium therefore is an example par excellence of our basic

thesis. On the one hand, philosophical analysis of the definition itself

leads to di‰culties, and it has its share of counterintuitive examples. On

the other hand, it is conceptually simple and attractive, and mathemati-

cally easy to work with. As a result, it has led to many important insights

in the applications, and has illuminated and established relations between

many di¤erent aspects of interactive decision situations. It is these appli-

cations and insights that lend it validity.
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12 The Core

An outcome x of a game dominates another outcome y if there is a coali-

tion S that can achieve x by its own e¤orts, each of whose members pre-

fers x to y. The core of the game is the set of all undominated outcomes.

The ‘‘core’’ applies to cooperative games; it is the cooperative solution

concept that is perhaps best known to economists. Most famous among

its applications is the core equivalence principle, which states that the

core coincides with the set of competitive (price equilibrium or Walras)

outcomes in perfectly competitive markets with many traders, each indi-

vidual one of whom is insignificant. First demonstrated by Edgeworth

(1881) more than a century ago, it was forgotten, then exhumed and

reformulated by Shubik (1959) about 25 years ago. Since then an amaz-

ingly rich and deep literature has sprung up, all of it focusing on this one

basic principle. It has been expressed as a limit theorem15 for markets

with n traders as n ! y, in the context of a non-atomic continuum of

traders,16 and in the context of non-standard analysis, in which individ-

ual traders formally appear as infinitesimal.17 Among the aspects that

have been discussed in one or more of these forms or modes are rates

of convergence,18 extension to productive economies,19 continuity as

the utility functions or initial bundles vary,20 and the extent to which

the result remains true when one restricts the family of ‘‘permitted’’

coalitions (coalitions via which domination may take place).21 Con-

siderable e¤ort has also gone into carefully determining the boundaries of

the core equivalence principle, i.e., just where it ceases to hold. For

example, in general, the principle no longer holds when there is a con-

tinuum of goods (qualities, locations) as well as traders.22

It should be mentioned that in any market—even one with a small

number of traders—each competitive outcome is in the core. It is the con-

verse that requires a large number of individually insignificant traders.

While the lion’s share of the literature on the core has been devoted to

the equivalence principle, there has been significant work on other appli-

15. Debreu and Scarf (1963).

16. Aumann (1964), Vind (1964).

17. Brown and Robinson (1975).

18. Anderson (1978), Arrow and Hahn (1971), Aumann (1979), Bewley (1973), Cheng
(1981), Debreu (1975), Grodal (1975), Shapley (1975).

19. Hildenbrand (1974), Sondermann (1974).

20. Dierker and Dierker (1972), Kannai (1970, 1972).

21. Grodal (1972), Mas-Colell (1977), Schmeidler (1972), Vind (1972).

22. See Ostroy (1981).
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cations. One area in which much work has been done is oligopoly or

syndication; in the continuum framework, one would express this by

saying that the space of traders has atoms (the oligopolists or syndicates)

as well as a non-atomic part (the ‘‘small’’ agents).23 One typical result is

that, when all the oligopolists are similar in utility and endowment

(although they may di¤er in size), the equivalence principle continues

to hold (Shitovitz, 1973). This relates to Bertrand’s (1883) classical

approach to duopoly theory, in which the duopolists compete until a

perfectly competitive outcome is reached.

The core has also been applied to public goods; it has been shown that

the Lindahl equilibrium is always in the core (Foley, 1970). The equi-

valence principle, however, does not hold in public goods economies with

a continuum of agents; there may be core points that are not Lindahl

equilibria.

An area that is currently very active is the study of the core in discrete

markets (e.g. private homes) with a fixed finite number of traders.24 The

classic paper in this area is Gale and Shapley’s (1962) ‘‘College Admis-

sions and the Stability of Marriage.’’ The main issue in those cases is the

non-emptiness of the core; there need be no price equilibrium in these

markets, and the core becomes the expression of competition.

There is no general existence (or rather non-emptiness) theorem for the

core, and if one strays too far from classical market models, it is indeed

often empty. In voting games, for example, the core is always empty

unless there are veto players (in which case the core shares all the payo¤

among the veto players). Economies with S-shaped production curves

(initially increasing returns, then decreasing) also have empty cores. Non-

emptiness of the core expresses a situation in which there is no dis-

incentive for the all-player coalition to form, in which each set of players

can do at least as well in the framework of the all-player coalition as it

could by itself—a kind of consumer surplus from the formation of the

all-player coalition. In transferable utility games v, it is related to super-

additivity of the coalitional worth function, or more specifically to local

superadditivity ‘‘at’’ the all-player coalition N (i.e. the worth of N is at

least as great as the sum of the worths of the coalitions in any partition of

N). In fact, the Bondareva–Shapley necessary and su‰cient condition for

the non-emptiness of the core (‘‘balancedness’’) can be thought of as a

23. Aumann (1973), Dreze, Gepts and Gabszewicz (1969), Gabszewicz and Dreze (1971),
Gabszewicz and Mertens (1971), Shitovitz (1974).

24. Crawford and Knoer (1981), Dubins and Freedman (1981), Gale (1984), Kaneko
(1976), Knuth (1976), Quinzii (1984), Roth (1982, 1984), Shapley and Scarf (1974), Shapley
and Shubik (1972), Thompson (1980).
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strong kind of superadditivity at N, as follows. Suppose we extend the

game to include ‘‘part-time’’ coalitions. That is, each player may split his

time into several parts, each of which he devotes to a di¤erent coalition;

if the players in a coalition S each devote a proportion y of their time to

S, then the resulting ‘‘part-time’’ coalition yS has worth yvðSÞ. Then the

core is non-empty if and only if the worth of N is at least as great as the

sum of the worths in any partition of N into ‘‘part-time’’ coalitions

(Bondareva, 1962, 1963; Shapley, 1967).

We noted above the loose association between non-empty cores and

markets. In the case of transferable utility (TU) games this was made

precise by Shapley and Shubik (1969): a game is associated with a market

if and only if it and all its subgames have non-empty cores. And this

happens if and only if the extended game is super-additive in the ordinary

sense; i.e., the worth of each (part- or full-time) coalition S is at least as

great as the sum of the worths of the (part- or full-time) coalitions in any

partition of S: (This is what is called a ‘‘totally balanced game.’’)

As far as non-transferable utility (NTU) games are concerned, the sit-

uation is roughly as follows. H. Scarf (1967) has extended the notion of

balancedness to such games, has shown that balanced games have non-

empty cores (but not conversely), and that markets are balanced. Billera

and Bixby (1973a, 1973b, 1974), Mas-Colell (1975) and others have

extended the characterization of market games to the NTU case; the

subject is, however, a di‰cult one, and the results are not as complete as

in the TU case.

One cannot complete the discussion of the core without mentioning

computation. Using his definition of balancedness, Scarf (1967) devel-

oped an algorithm for finding a point in the core. This algorithm was the

forerunner of the algorithms later developed by Scarf (1973) for finding

competitive equilibria and, more generally, fixed points of mappings.

Here again is an unexpected spino¤: investigation of the core eventually

led to the creation of a whole new branch of numerical mathematics, the

calculation of fixed points.

Like the Nash equilibrium, the core is subject to puzzling counter-

intuitive examples. In a market with two complementary goods—e.g.

right and left gloves—suppose m traders are endowed with one right

glove each and mþ 1 traders with one left glove each: then the core con-

sists of a unique point, under which the owners of the left gloves must

simply give all their merchandise, for nothing, to the owners of the right

gloves. This might perhaps be viewed as an extreme expression of cut-

throat competition.

More puzzling, though, is the case in which two traders hold one right

glove each, one trader holds a left glove, and one trader holds two left
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gloves. In this case, too, the holders of the left gloves must give their

merchandise, for nothing, to the owners of the right gloves. This is more

di‰cult to understand: by the simple expedient of throwing away a

glove—an action that he can take by himself, without consulting any-

body—the holder of the two left gloves can make the situation com-

pletely symmetric. Yet the unique core point assigns him nothing.

We have already mentioned that the core (more precisely, the b-core)

of a game coincides with the strong equilibrium payo¤s in an infinite

repetition of that game. Some relations with other solution concepts are as

follows. The core is included in each von Neumann–Morgenstern (N–M)

stable set (see section 14) as well as in the bargaining set (Davis and

Maschler, 1967; Peleg, 1967); when non-empty it intersects the kernel

(Davis and Maschler, 1965) and contains the nucleolus (Schmeidler,

1969b). There are in fact some beautiful geometric characterizations of

the kernel and the nucleolus as ‘‘central’’ points in the core (Maschler,

Peleg and Shapley, 1972). There is no clear general relationship with the

value; but in non-atomic market games the core contains the value, and

coincides with it if the market is su‰ciently smooth (Aumann, 1975). A

convex TU game always has a non-empty core (Shapley, 1971); it con-

tains the value, includes the kernel (which coincides with the nucleolus

for such games) and coincides with the bargaining set and the N–M

stable set (there is only one stable set in such games) (Maschler, Peleg

and Shapley, 1972). From all this there emerges a picture of the core as

being a ‘‘central’’ solution concept, one with significant relations with

many other concepts. Conceptually, too, one may think of the core as a

sort of starting point or first approximation, with other solution concepts

overcoming shortcomings in the core in various di¤erent ways.

13 The Core: Summary and Conclusions

Most applications of the core are to economic contexts, more specifically

to market contexts of one form or another. The outstanding application

is embodied in the core equivalence principle, which relates the core of a

perfectly competitive market to its competitive equilibria.

Conceptually, the core expresses the idea of unbridled competition;

non-emptiness of the core expresses the idea that such competition can

lead to stability, that there is an outcome consistent with it. In practice,

this happens chiefly in economic contexts of the kind described above.

Political contexts are inherently less stable, and for them the core is often

empty; they are covered by concepts such as the value, which expresses

compromise or average outcome, or the von Neumann–Morgenstern

(N–M) stable set, which expresses a weaker and more complex kind of
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stability than the core. In a game with both political and economic

aspects, the core often is not sensitive to the political aspects even when it

is not empty (e.g., in the voting model of Aumann and Kurz, 1977, or,

more generally, Neyman’s (1985) political-economic games).

It should be stressed that this image of the core as expressing competi-

tion emerges from the applications; it is not in any sense obvious from

the definition. The relationship between the core and competition is

indeed a two-way street; several investigations of the core—most notably

the equivalence principle itself, but also Ostroy’s investigations of the

equivalence principle with a continuum of goods, or the study of the core

in one-homogeneous non-atomic superadditive games—have shed light

on the nature of competition, and have sharpened our idea of what we

mean when we talk about a perfectly competitive set-up.

The definition of the core is in form extremely simple, and the concept

is mathematically fairly tractable and easy to work with. Intuitively, it is

perhaps the clearest and most transparent concept in the theory of games.

Its main fault is that it is often empty; therefore, unlike the Nash equilib-

rium, the von Neumann–Morgenstern stable set and the value, it cannot

serve as a unifying theory for the rational social sciences, or even for all

of economics. It is closely associated with the competitive side of eco-

nomics, and there it gives important insights.

There are important relationships between the core and almost all

other solution concepts. In a sense, the extremely simple and transparent

definition of the core may be considered a starting point for the reasoning

leading to more sophisticated concepts like the N–M stable set, the

nucleolus, and so on. Thus, in more senses than one, the core occupies a

central position in cooperative game theory.

14 The Von Neumann–Morgenstern Stable Set

The definition of the core of a game as the set of all undominated out-

comes is subject to the following conceptual query. Suppose we think of

outcomes in the core as ‘‘good’’ or ‘‘stable.’’ Then we should not exclude

an outcome just because it is dominated by some other outcome; we

should demand that the dominating outcome itself be ‘‘stable.’’ If the

outcome y is dominated by an outcome x that is not itself ‘‘stable,’’ then

the argument for excluding y is rather weak; proponents of y can argue

with some justice that replacing it with x would not lead to a more stable

situation, so we may as well stay where we are. If the core were the set of

all outcomes not dominated by any element of the core, then there would

be no di‰culty: this, however, is not the case.
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We are led to the following definition: a set K of outcomes is called

stable if it is the set of all outcomes not dominated by any element of K .

The stable sets are precisely the solutions of von Neumann and Morgen-

stern (1944).

In two-person bargaining games, there is a unique stable set, which

consists of all e‰cient (i.e., Pareto-optimal) and individually rational

outcomes. Usually, however, there is more than one stable set. For

example, in the three-person majority game there is a unique symmetric

stable set; it consists of three outcomes, each of which provides for for-

mation of one of the three possible two-person coalitions, which then

divides the available payo¤ equally. But there are many non-symmetric

stable sets, called ‘‘discriminatory.’’ Each of these specifies that some

fixed two-person coalition forms, assigns to the remaining player a fixed

amount (which must be less than half the total payo¤ ), then divides the

remaining amount in an arbitrary fashion between the two players in the

coalition. Geometrically, therefore, each such stable set is an interval.

Intuitively, the symmetric solution represents a situation in which, a

priori, each of the three players is a possible coalition partner; which

coalition will form is determined by negotiations between the players,

based on payo¤. The three outcomes in the solution are stable as a set,

not individually; in a sense, each is ‘‘right’’ only because the others are

also there. Von Neumann and Morgenstern use the term ‘‘standard of

behavior’’; the idea is that, since each coalition knows or expects that the

other coalitions will divide 50–50 if they form, it too is motivated to

divide 50–50. It represents a form of social organization that, together

with corresponding norms of dividing the payo¤, is stable as a whole.

The discriminatory solutions also represent stable forms of social

organization, of a di¤erent kind. One player is excluded a priori from the

negotiations. He may or may not be given a certain sum ‘‘to keep him

quiet,’’ but this sum is fixed and not subject to negotiation, and neither of

the other players considers it a real possibility that the excluded player

will enter the negotiations. As a consequence, there is no constraint on

them; the negotiations between them turn into a two-person bargaining

game, and the solution of this, as we have seen, is the entire e‰cient

individually rational interval.

Consider next the ‘‘glove market’’ of section 12. Take the very simple

case in which m ¼ 1; i.e., there are just three players, two holding left

gloves and one holding a right glove. It is convenient to think of the for-

mer as ‘‘sellers,’’ the latter as a ‘‘buyer’’ (of left gloves). The core says

that the sellers simply give their merchandise to the buyer: they get noth-

ing out of it. This corresponds to unbridled competition, in which each

seller tries to underbid the other. The N–M stable sets, on the other
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hand, have the two sellers colluding, i.e., forming a single bargaining

unit, to bargain with the buyer. Between this bargaining unit and the

buyer we again have a two-person bargaining game, which leads to an

interval. How the two sellers divide what they get depends on the partic-

ular stable set under consideration. Some stable sets have them dividing it

in a fixed proportion, e.g., 50–50; in others they may divide 50–50 up to

a certain amount, with the remainder going to the first seller; and so on.

There are many possible arrangements. The important thing is that the

sellers must agree beforehand on a definite way of dividing whatever they

get, and it must be worthwhile for each seller that the coalition of sellers

get as much as possible from the buyer, so that there is no possibility of

the sellers entering into competition with each other during negotiations

with the buyer.

Note that, unlike in the three-person majority game, in this game all

the stable sets involve essentially the same form of social organization:

the sellers organize in a unit that bargains with the buyer. The di¤erent

stable sets di¤er only in the internal arrangement that the sellers may

have for dividing what they get from the buyer.

A good chunk of stable set theory is devoted to weighted majority

voting games. These may be thought of as parliaments; the ‘‘players’’ are

the parties rather than individual members. The interesting cases are

those in which no single party has a majority. Such a game is called

homogeneous if each minimal winning coalition has total ‘‘weight’’ equal

to the ‘‘quota’’ (the ‘‘weight’’ of a party is the number of members it has;

the ‘‘quota’’ is the minimum total weight needed to ‘‘win’’—i.e., to form

a government or pass a bill). It is called strong if the quota is a simple

majority and the total weight is odd. It would seem that strong homoge-

neous voting games are few and far between; but in fact there are many

games that are equivalent to strong homogeneous games, though this

is not apparent from the given numbers. For example, this is the case

for every strong game with fewer than six players (von Neumann and

Morgenstern, 1944).

Every strong homogeneous game has a stable set that predicts that

some minimal winning coalition will form, and will divide the payo¤

among the parties in the coalition in proportion to their representation in

parliament. This generalizes the symmetric solution in the three-person

majority game.

When the game is not strong, as for example in American political

conventions in the first half of the century, the social organization pre-

dicated by stable set theory is not in terms of minimal winning coalitions,

but in terms of minimal blocking coalitions. A coalition S is blocking if
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it can prevent a win, i.e., if each winning coalition must intersect S. In

the convention example, any coalition with more than one-third of the

members is blocking.

This is a nice example of the kind of insight that game theory a¤ords.

All the evidence from strong games—and this includes far more than the

simple homogeneous weighted majority case cited above—indicated that

the important coalitions were the winning ones. Then came Bott’s (1953)

analysis of the simplest symmetric voting games that are not strong,

which pointed to the blocking coalitions, and indicated that in strong

games the winning coalitions are important because they coincide with

the blocking ones. As soon as one realizes that in non-strong games the

players organize themselves into blocking coalitions, one understands

much better what went on in those political conventions, the deals that

were made in the smoke-filled back rooms, the payo¤s to special interest

groups that were, in fact, blocking coalitions.

In brief, the outcome is unexpected, but once there, it sounds right and

natural; it clicks into place. This is game theory at its best.

The literature is full of dozens of applications of the N–M theory, each

with its own stable set or class of stable sets, each with its own story and

interpretation involving some particular form of social organization.

There is no space here even to mention all these results; indeed, we are

not trying to survey the field, but only to give the flavor of the kind of

insight that is a¤orded by the theory.

We mention only one more outstanding application, of a more recent

vintage than the foregoing ones. This is S. Hart’s (1974) analysis of the

formation of cartels in large markets. The market has a continuum of

traders, divided into disjoint types (traders of the same type have the

same endowments and utility functions). Each type has a monopoly on

some commodity; more precisely, each commodity is held by only one

type. Then the symmetric stable sets of the market correspond to the

stable sets of the market in which there is only one trader of each type. (A

stable set is symmetric if it treats traders of the same type in the same

way, i.e., if it is invariant under permutations of each type separately. It

is not required a priori that individual outcomes be symmetric.)

The interpretation, of course, is that the types organize themselves into

cartels, each of which acts as a single player.

Consider, for example, a two-type market of this kind. Hart’s theorem

says that each of the two types will bargain as a unit. The result is a two-

person bargaining game, which as we know has only one solution, con-

sisting of all e‰cient individually rational outcomes. In the original

game, therefore, there is a unique symmetric solution, consisting of all
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e‰cient individually rational outcomes that assign the same bundle to

traders of the same type. In contrast, the core of the two-type non-atomic

market is very di¤erent from that of its two-person cousin; in the non-

atomic case it contains only the competitive outcome (or outcomes), in

the two-person case it contains the whole bargaining range.

Most of stable set theory deals with TU games; Hart’s theorem is one

of the few instances of a successful NTU analysis.

There is no general existence theorem for stable sets. The existence

problem was open for many years. R. Stearns (1965) found a seven-

person NTU game without a stable set, and W. Lucas (1969) made

headlines by finding a ten-person TU game without a stable set. Recently

Lucas and Rabie (1982) have found a coreless 14-person TU game

without a stable set.

But non-existence is not nearly as serious a problem for stable sets as

for the core. The counterexamples are ingenious, di‰cult and deep; but

there is no question that they are contrived. They do not appear to cor-

respond to any economic, political or social reality; there is no broad

class of games known to have no stable sets. Lucas’s examples are of

great importance because they show that it is hopeless to look for a gen-

eral existence theorem; in practice, though, one can usually find a stable

set if one tries hard enough.

15 N–M Stable Sets: Summary and Conclusion

Conceptually, stable sets express the idea of social organization—minimal

winning coalitions, blocking coalitions, systematic discrimination against

players or groups of players, cartel formation, groups within groups and

so on. The organizational forms are often of great subtlety; they are

endogenous, they spring from the analysis. This is quite di¤erent from

other game-theoretic approaches to social organization, in which the

forms (e.g., partitions into coalitions) are exogenous, and one looks for a

structure of the given form possessing one or another kind of stability. In

this sense the N–M theory is of a subtlety and depth unparalleled in

game theory.

As in the case of the core, it should be stressed that this image of stable

sets emerges from the applications. It is not in any sense obvious from

the definition; indeed, there is no hint of organizational forms in the

definition—the definition refers only to outcomes. The conceptual con-

nection with organizational forms is in the interpretation only and has no

formal status; and it is a matter of some mystery that this particu-

lar definition should lead so frequently and consistently to this kind of

interpretation.
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A stable set is stable as a whole; unlike core outcomes or Nash equi-

libria, individual outcomes in a stable set possess little or no stability by

themselves. This, too, emerges from the applications; one would not have

expected it from the definition as such, which in form very much resem-

bles that of the core.

Stable set theory has been moderately ‘‘successful.’’ It has a large

number of applications. They are not limited to one area, but are

spread over the whole gamut of applications of game theory—political,

economic, production with constant or increasing or S-shaped returns

(Hart, 1973) and so on. As we have seen, the applications often yield im-

portant insights; and while the insights usually have to do with organiza-

tional forms, they are, other than that, often quite di¤erent from each

other. In an important sense, therefore, the N–M theory can be con-

sidered unifying.

What has prevented the theory from being more successful is that it is

so di‰cult to work with. Finding stable sets involves a new tour de force

of mathematical reasoning for each game or class of games that is con-

sidered. Other than a small number of very elementary truisms (e.g., that

the core is contained in every stable set), there is no theory, no tools, cer-

tainly no algorithm. There are perhaps some rough methods, ideas that

recur here and there, tricks of the trade; people with experience are better

at it than newcomers. But basically you just have to slug it out anew

every time. And because stable sets do not always exist, you cannot even

be sure that you are looking for something that is there. NTU games are

even more di‰cult to solve than TU games. This has led to the paucity

of NTU results; and, because of the central importance of NTU games in

the applications, this is another factor limiting the ‘‘success’’ of the theory.

But while there is no mathematical theory that will help one to find

stable sets, there is a sort of qualitative classificatory theory in the inter-

pretations. Similar qualitative phenomena pop up in solutions of many

di¤erent games. Minimal winning and minimal blocking coalitions occur

in many stable sets; in interpreting the solutions of a three-person market

game we make use of the solution of two-person bargaining games;

‘‘bargaining curves’’ appear in stable sets; and so on. Other than hinting

at what to look for, this perhaps is not of much use in finding stable sets.

But it does lend coherence and unity to the qualitative theory.

16 The Shapley Value

Like the core and the N–M stable set, the Shapley value (Shapley, 1953)

is a cooperative solution concept; i.e., it applies to cooperative games
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only. In finite TU games, it assigns a unique outcome to each game,

which can be thought of as a sort of average or expected outcome, or an

a priori measure of power. Other interpretations will be discussed below.

The Shapley value has a very broad spectrum of applications. Voting

games have been studied thoroughly. In the UN Security Council, the

‘‘Big Five’’ hold more than 98 per cent of the total power (i.e., value)

(Shapley and Shubik, 1954). In a parliament with one large party and

many small parties, the large party holds a disproportionately large pro-

portion of the power (Shapiro and Shapley, 1978; Milnor and Shapley,

1978). For example, if the large party has more than half the seats, it has

all the power; if it has one-third of the seats, it has approximately half the

power. In the American Electoral College, the large states again have a

disproportionately large share of the power; a state like California, for

example, has about 10 per cent more power than could be expected from

its proportion in the Electoral College (Riker and Shapley, 1968).

These phenomena correspond well with our experience, and also with

our intuitions (which are, of course, the creation of our experience). Per-

haps the disproportionate strength of the Big Five in the UN Security

Council comes as somewhat of a surprise to the casual observer; but the

careful student will have realized that nothing can be done without them,

and once they do all agree, then enough of the other countries will also.

That a party with a majority in parliament has all the power is obvious.

Perhaps the statement about a party with a third of the seats having half

the power is less obvious; but it will not sound so strange to some of the

older Israelis, who may remember the disproportionate power of the

Labor Party in the long years when it held only one-third of the seats in

parliament. Altogether this corresponds nicely to the dictum ‘‘Unity is

power’’ (‘‘L’Union fait la force’’). As for the Electoral College, presi-

dential candidates spend most of their campaign time in ‘‘key states,’’

and these rarely include Nevada.

Let us next consider a parliament with two large parties and many

small ones. Suppose, for example, that each of the large parties has one-

third of the seats, the remaining seats being spread among many small

parties. Then unity is weakness! The large parties have only about one-

quarter of the power each, and the small parties have half the power

between them (Milnor and Shapley, 1978). It would be foolish for the

small parties to form a ‘‘common front.’’

This may sound paradoxical, but, again, students of the Israeli scene

will not be surprised. In the presence of the two large parties—the Likud

and Labor—there seems to be no tendency for the smaller parties (e.g.,

the four religious parties) to form a common front.
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This curious phenomenon can be understood as follows. If the two

large parties form a coalition with each other, they will have between

them two-thirds of the vote, which is much more than needed, and they

will have to share power equally. There is therefore a tendency for the

large parties to seek coalition partners among the smaller parties; only

half the smaller parties will be needed. However, competition will

develop among the two large parties for the favors of the small parties;

this will drive up the ‘‘price’’ of the latter until the point is reached where

it is hardly more worthwhile for either large party to go with small par-

ties than for it to join forces with the other large party (as has, in fact,

happened in Israel).

The ‘‘competitive price of a vote’’ is an idea that appears in the intui-

tive interpretation of results about the value in several voting contexts.

Another example is in voting for non-exclusive public goods, in which

under certain circumstances the choice of public goods is not a¤ected by

who is allowed to vote; what is happening is that, because of the non-

exclusivity, the ‘‘price of a vote’’ is next to nothing, and so the vote

becomes insignificant (Aumann, Kurz and Neyman, 1983, 1987).

Normatively, values have been used to analyze weighted voting in

connection with the US Supreme Court ‘‘one-man, one-vote’’ decision.

According to this decision, equal representation in the legislature for dis-

tricts with substantially di¤erent populations is unconstitutional. Rather

than redistricting frequently, it was proposed to use weighted voting.

Theoretically, this could lead to a situation in which a single district has

a majority in the legislature; and even when this does not happen, the

power conferred by weighted voting on the various representatives is by

no means proportional to their weight, as we have seen. An analysis of

this situation in terms of various philosophies of legislative government

was carried out by Riker and Shapley (1968): it turns out that it makes

a considerable di¤erence whether the ‘‘players’’ are the districts, or the

individual voters in the district. Testimony on values has been an impor-

tant factor in deciding court cases on re-districting.25

Let us turn to economics. In large markets, the value consists of com-

petitive outcomes. In the smooth case (su‰ciently di¤erentiable utilities,

no corner solutions), it consists of all competitive outcomes; i.e., it coin-

cides with the core. In non-smooth situations the core may be quite large;

in these cases, the value occupies a central position in the core. For

example, in large TU markets in which the core has a center of symme-

25. Testimony on values was heard by the Supreme Court during the following cases: Baker
v. Carr, 369 US 186 [1962], Gray v. Sanders, 372 US 386 [1963], Wesberry v. Sanders, 376
US 1 [1964], Reynolds v. Sims, 377 US 533 [1964].
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try, the value is that center of symmetry (Hart, 1977a, 1977b). When the

core has no center of symmetry, the value is obtained by calculating, for

each trader, the core point that is best for him, then averaging over all

traders (Hart, 1980).

Values have also been used to analyze problems of taxation,26 public

goods,27 monopoly,28 increasing returns29 and other specific economic

models.

In two-person NTU games, the value coincides with the bargaining

solution of Nash (1950). If one uses Harsanyi’s (1959) method for deriv-

ing the coalitional worth (‘‘characteristic function’’) from the strategic

(‘‘normal’’) form, this leads to Nash’s solution (1953) for two-person

cooperative games.

It is worthwhile here to point to an interesting normative implication

of Nash’s bargaining model, as well as of other bargaining models.

A fundamental feature of these models is that, while threats are never

carried out (in the complete information case), the ability to make them

plays a crucial role in determining the final Pareto-optimal accom-

modation between the bargainers. Our ability to fight a war determines

how we shall live at peace. It is a mistake to think that atomic weapons,

for example, exist only for defense in case of war: on the contrary, they

determine how we live on a day-to-day basis.

A surprising normative application of value theory, which has recently

gathered quite a bit of momentum, is to cost allocation. Specific appli-

cations include, for example, water management,30 electric power,31 pol-

lution treatment,32 intra-company transfer prices,33 allocation of TVA

projects,34 allocation of taxes,35 public utility pricing36 and water

resource development.37 Another application, spectacular because of its

depth and complexity, is to internal pricing of long-distance telephone

26. Aumann and Kurz (1977), Gardner (1984), Imai (1983), Kurz (1977, 1980), Osborne
(1984).

27. Aumann, Kurz and Neyman (1983, 1987), Gardner (1975), Harsanyi (1959), Rosen-
muller (1981, 1982).

28. Guesnerie (1977).

29. Mas-Colell (1980).

30. Bogardi and Szidarovsky (1978).

31. Gately (1974).

32. Loehman, Pengry and Whinston (1973).

33. Manes and Verrecchia (1982), Shubik (1963).

34. Parker (1943), Ransmeier (1942), Stra‰n and Heaney (1981).

35. Scott (1981), Verrecchia (1981).

36. Sharkey (1982).

37. Suzuki and Nakayama (1976).
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calls in a large organization; a system of this kind, developed by Billera,

Heath and Raanan (1978), was adopted by Cornell University about five

years ago.

We illustrate the method with the airport landing application, due to

Littlechild and Owen (1973). The runway at an airport must be large

enough to accommodate the largest aircraft that will land there. But it

would be absurd to charge the same fees to a Boeing 747 and a Piper.

The system used at many airports is as follows. One figures the cost of

a runway su‰cient for the smallest plane that lands at the airport; this

cost is divided equally between all landings. Next, one figures the cost

increment necessary to build a runway long enough for the next largest

plane; this increment is divided equally between all landings except those

of the smallest planes. And so on.

Littlechild noticed that this is equivalent to charging each landing the

Shapley value of a certain game. The players are individual landings; the

worth of a coalition is the cost of building an airport that would accom-

modate those landings. The extension to more complex cost allocation

problems is clear, at least in principle.

In the 2000-year-old Babylonian Talmud, the Shapley value crops up

in the solution of a bankruptcy problem. Of course, the Talmud does not

justify this solution by means of axioms; it does not have the general

notion of a game as we know it. The problem the Talmud deals with is

identical in mathematical form to the landing fee problem; its solution

has independent intuitive appeal, and presumably the Talmud’s choice of

solution is based on this. (This is confirmed by medieval commentators.)

The interesting point is that the Shapley value is able to unify so many

di¤erent, apparently disparate phenomena.

Incidentally, it is this kind of legal application that I referred to in

section 6 as being somewhere between descriptive and normative. It is

descriptive of existing legal norms.

The Shapley value was originally axiomatized for finite TU games

(Shapley, 1953); the axiomatization was later extended to games with a

continuum of players (Aumann and Shapley, 1974) and to NTU games.

A. Roth (1977) used the original TU axiomatization to give a rigorous

treatment of the idea that the value represents the utility to a player of

participating in a game.

Existence of the value is no problem. The value exists in all finite

games, and in large classes of NTU games and infinite games. J. F.

Mertens (1987) has shown that all non-atomic TU market games have a

value. Uniqueness is slightly more delicate. The value is unique in all

finite TU games, in many infinite TU games, and in two-person NTU

games; in NTU games with three or more players, however, the value is
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not always unique. Indeed, we have seen that, in non-atomic NTU mar-

kets that are su‰ciently smooth, the value coincides with the competitive

outcomes, and these are known not to be unique.

17 The Shapley Value: Summary and Conclusions

The Shapley value is perhaps the most ‘‘successful’’ of all cooperative

solution concepts. Like the N–M stable sets, it has a very broad spec-

trum—it almost always exists, and it applies to political as well as eco-

nomic and ‘‘mixed’’ contexts. It very often gives results with significant

intuitive content; unlike with the core, this intuitive content is often of

independent interest, not connected with the idea of value in any obvious

or transparent manner. Unlike with either the N–M stable sets or the

core, there are very general existence theorems, which cover essentially all

the applications that one might want to consider.

A very important point is that the value is mathematically tractable. It

lends itself to the application of mathematical methods from probability,

measure theory, functional analysis and other areas. As a result, a very

considerable body of theory has been built around the value; this theory

may well be mathematically the richest and deepest in game theory. Of

course this is intellectually pleasing, but that is not where its importance

lies. Its importance lies in the fact that this theory enables us to deal with

the applications, to attack fairly complex models in a systematic manner

and to solve them. For non-atomic games there has even been developed

a sort of rough calculus that enables us to calculate values ‘‘quickly,’’

though often the rigorous justification takes longer.

Conceptually, the image of the value that arises from the applications

is of an index of strength of a player, based on the strength of the coali-

tions of which he is a member and of those of which he is not a member.

A closely related view of the value is as a group decision or arbitrated

outcome. Unlike the Nash equilibrium, the core, or the N–M stable set,

the value has little or no stability on its own.

18 General Summary and Conclusion

Game-theoretic solution concepts should be understood in terms of their

applications, and should be judged by the quantity and quality of their

applications. The solution concepts we have considered all have di¤erent

kinds of applications, which reflect back on the solution concepts and

yield di¤erent interpretations of them. In each case, important descriptive
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and normative insights result; each of the concepts unifies a di¤erent

aspect of rationality in interactive decision-making.
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Note added in proof Professor Elmer O¤enbacher of Temple University has informed us
that Newtonian mechanics, too, predicts the precession of the perihelion of Mercury (see
Section 2)—that relativity theory only provides a correction in the magnitude of the e¤ect.
Indeed, Newtonian mechanics predicts a precession of 432 arc seconds per century, whereas
the observed value—which is also that predicted by relativity—is 475.
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